Fuzzy Interpolation Systems and Applications
نویسندگان
چکیده
Fuzzy inference systems provide a simple yet effective solution to complex non-linear problems, which have been applied to numerous real-world applications with great success. However, conventional fuzzy inference systems may suffer from either too sparse, too complex or imbalanced rule bases, given that the data may be unevenly distributed in the problem space regardless of its volume. Fuzzy interpolation addresses this. It enables fuzzy inferences with sparse rule bases when the sparse rule base does not cover a given input, and it simplifies very dense rule bases by approximating certain rules with their neighbouring ones. This chapter systematically reviews different types of fuzzy interpolation approaches and their variations, in terms of both the interpolation mechanism (inference engine) and sparse rule base generation. Representative applications of fuzzy interpolation in the field of control are also revisited in this chapter, which not only validate fuzzy interpolation approaches but also demonstrate its efficacy and potential for wider applications.
منابع مشابه
Interpolation of fuzzy data by using flat end fuzzy splines
In this paper, a new set of spline functions called ``Flat End Fuzzy Spline" is defined to interpolate given fuzzy data. Some important theorems on these splines together with their existence and uniqueness properties are discussed. Then numerical examples are presented to illustrate the differences between of using our spline and other interpolations that have been studied before.
متن کاملAn Improved Multidimensional Alpha-cut Based Fuzzy Interpolation Technique
Fuzzy rule based systems have been very popular in many engineering applications. However, when generating fuzzy rules from the available information, it may result in a sparse fuzzy rule base. Fuzzy rule interpolation techniques have been established to solve the problems encountered by sparse rule bases. In most engineering applications, the use of more than one input variable is common. This...
متن کاملSurvey on Practical Applications of Fuzzy Rule Interpolation
In the last thirty years fuzzy logic became very popular. One can find solutions based on it in several fields from industrial systems to house appliances. Recently a new category of fuzzy systems gained more attention, the so called fuzzy rule interpolation (FRI) based systems. Owing to the low complexity of their rule bases, i.e. they can infer as well when only the relevant rules are known, ...
متن کاملPiecewise cubic interpolation of fuzzy data based on B-spline basis functions
In this paper fuzzy piecewise cubic interpolation is constructed for fuzzy data based on B-spline basis functions. We add two new additional conditions which guarantee uniqueness of fuzzy B-spline interpolation.Other conditions are imposed on the interpolation data to guarantee that the interpolation function to be a well-defined fuzzy function. Finally some examples are given to illustrate the...
متن کاملFuzzy Rule Interpolation for Multidimensional Input Space with Petroleum Engineering Application
Fuzzy rule based systems have been very popular in many engineering applications. In petroleum engineering, fuzzy rules are normally constructed using some fuzzy rule extraction techniques to establish the petrophysical properties prediction model. However, when generating fizzy rules from the available information, it may result in a sparse fuzzy rule base. The use of more than one input varia...
متن کامل